611 research outputs found

    Nonhematopoietic Variants of Erythropoietin in Ischemic Stroke: Need for Step-Wise Proof-of-Concept Studies

    Get PDF
    Neuroprotective, but not hematopoietic, variants of erythropoietin (EPO), such as Neuro-EPO, are promising candidates for treatment in the acute and subacute stroke phase. Characterized by its low sialic acid content and therefore exhibiting a very short plasma half-life, Neuro-EPO can probably not be administered systemically via the blood. As such, alternate routes of delivery are required. In their paper that now appears in TheScientificWorldJOURNAL, RodrĂ­guez Cruz and colleagues provide evidence that Neuro-EPO promotes neurological recovery in the ischemic gerbil brain in a way that is similarly potent, if not superior, to systemically administered EPO. In view of the potential clinical use of Neuro-EPO, stringent proof-of-concept studies are urgently needed to define (1) how intranasally delivered Neuro-EPO reaches the brain, (2) which concentrations are achieved in the ischemic and nonischemic brain tissue of rodents and nonhuman primates, and (3) which are the mechanisms via which Neuro-EPO protects from injury. Only with such information should decisions be made whether intranasal Neuro-EPO may be evaluated in human patients

    Cutting edges in neuroscience to exceed borders

    Get PDF

    Animal Models of Ischemic Stroke. Part One: Modeling Risk Factors

    Get PDF
    Ischemic stroke is one of the leading causes of long-term disability and death in developed and developing countries. As emerging disease, stroke related mortality and morbidity is going to step up in the next decades. This is both due to the poor identification of risk factors and persistence of unhealthy habits, as well as to the aging of the population. To counteract the estimated increase in stroke incidence, it is of primary importance to identify risk factors, study their effects, to promote primary and secondary prevention, and to extend the therapeutic repertoire that is currently limited to the very first hours after stroke. While epidemiologic studies in the human population are essential to identify emerging risk factors, adequate animal models represent a fundamental tool to dissect stroke risk factors to their molecular mechanism and to find efficacious therapeutic strategies for this complex multi- factorial disorder. The present review is organized into two parts: the first part deals with the animal models that have been developed to study stroke and its related risk factors and the second part analyzes the specific stroke models. These models represent an indispensable tool to investigate the mechanisms of cerebral injury and to develop novel therapies

    Ischemic stroke and concomitant gastrointestinal complications- a fatal combination for patient recovery

    Get PDF
    Stroke is primarily a neurodegenerative disease but can also severely impact the functions of other vital organs and deteriorate disease outcomes. A malfunction of the gastrointestinal tract (GIT), commonly observed in stroke patients, is often characterized by severe bowel obstruction, intestinal microbiota changes and inflammation. Over-activated immune cells after stroke are the major contributors to endorse intestinal inflammation and may induce damage to single-layer epithelial cell barriers. The post-stroke leakage of intestinal barriers may allow the translocation and dissemination of resident microflora to systemic organs and cause sepsis. This overshooting systemic immune reaction fuels ongoing inflammation in the degenerating brain and slows recovery. Currently, the therapeutic options to treat these GIT-associated anomalies are very limited and further research is required to develop novel treatments. In this mini-review, we first discuss the current knowledge from clinical studies and experimental stroke models that provide strong evidence of the existence of post-stroke GIT complications. Then, we review the literature regarding novel therapeutic approaches that might help to maintain GIT homeostasis and improve neurological outcomes in stroke patients

    Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke

    Get PDF
    Hypoxia is a central pathophysiological component in cancer, myocardial infarction and ischemic stroke, which represent the most common medical conditions resulting in long-term disability and death. Recent evidence suggests common signaling pathways in these diverse settings mediated by non-coding RNAs (ncRNAs), which are packaged in extracellular vesicles (EVs) protecting ncRNAs from degradation. EVs are a heterogeneous group of lipid bilayer-covered vesicles released from virtually all cells, which have important roles in intercellular communication. Recent studies pointed out that ncRNAs including long non-coding RNAs (IncRNAs) and microRNAs (miRNAs) are selectively sorted into EVs, modulating specific aspects of cancer development, namely cell proliferation, migration, invasion, angiogenesis, immune tolerance or drug resistance, under conditions of hypoxia in recipient cells. In myocardial infarction and stroke, ncRNAs shuttled via EVs have been shown to control tissue survival and remodeling post-hypoxia by regulating cell injury, inflammatory responses, angiogenesis, neurogenesis or neuronal plasticity. This review discusses recent evidence on EV-associated ncRNAs in hypoxic cancer, myocardial infarction and stroke, discussing their cellular origin, biological function and disease significance. The emerging concept of IncRNA-circular RNA/ miRNA/ mRNA networks is outlined, upon which ncRNAs synergistically respond to hypoxia in order to modify disease responses. Particular notion is given to ncRNAs participating in at least two of the three conditions, which revealed a large degree of overlaps across pathophysiological conditions. Possible roles of EV-ncRNAs as therapeutic products or theranostic markers are defined

    VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena

    Get PDF
    Therapeutic angiogenesis with vascular endothelial growth factor (VEGF) is a clinically promising strategy in ischaemic disease. The pathophysiological consequences of enhanced vessel formation, however, are poorly understood. We established mice overexpressing human VEGF165 under a neuron-specific promoter, which exhibited an increased density of brain vessels under physiological conditions and enhanced angiogenesis after brain ischaemia. Following transient intraluminal middle cerebral artery (MCA) occlusions, VEGF overexpression significantly alleviated neurological deficits and infarct volume, and reduced disseminated neuronal injury and caspase-3 activity, confirming earlier observations that VEGF has neuroprotective properties. Brain swelling was not influenced in VEGF-overexpressing animals, while sodium fluorescein extravasation was moderately increased, suggesting that VEGF induces a mild blood-brain barrier leakage. To elucidate whether enhanced angiogenesis improves regional cerebral blood flow in the ischaemic brain, [14C]iodoantipyrine autoradiography was performed. Autoradiographies revealed that VEGF induces haemodynamic steal phenomena with reduced blood flow in ischaemic areas and increased flow values only outside the MCA territory. Our data demonstrate that VEGF protects neurons from ischaemic cell death by a direct action rather than by promoting angiogenesis, and suggest that strategies aiming at increasing vascular density in the whole brain, e.g. by VEGF overexpression, may worsen rather than improve cerebral haemodynamics after strok

    Multicellular Crosstalk Between Exosomes and the Neurovascular Unit After Cerebral Ischemia. Therapeutic Implications

    Get PDF
    Restorative strategies after stroke are focused on the remodeling of cerebral endothelial cells and brain parenchymal cells. The latter, i.e., neurons, neural precursor cells and glial cells, synergistically interact with endothelial cells in the ischemic brain, providing a neurovascular unit (NVU) remodeling that can be used as target for stroke therapies. Intercellular communication and signaling within the NVU, the multicellular brain-vessel-blood interface, including its highly selective blood-brain barrier, are fundamental to the central nervous system homeostasis and function. Emerging research designates cell-derived extracellular vesicles and especially the nano-sized exosomes, as a complex mean of cell-to-cell communication, with potential use for clinical applications. Through their richness in active molecules and biological information (e.g., proteins, lipids, genetic material), exosomes contribute to intercellular signaling, a condition particularly required in the central nervous system. Cerebral endothelial cells, perivascular astrocytes, pericytes, microglia and neurons, all part of the NVU, have been shown to release and uptake exosomes. Also, exosomes cross the blood-brain and blood-cerebrospinal fluid barriers, allowing communication between periphery and brain, in normal and disease conditions. As such exosomes might be a powerful diagnostic tool and a promising therapeutic shuttle of natural nanoparticles, but also a means of disease spreading (e.g., immune system modulation, pro-inflammatory action, propagation of neurodegenerative factors). This review highlights the importance of exosomes in mediating the intercellular crosstalk within the NVU and reveals the restorative therapeutic potential of exosomes harvested from multipotent mesenchymal stem cells in ischemic stroke, a frequent neurologic condition lacking an efficient therapy
    • …
    corecore